3. V. I. Tseplyaev, "Isothermal discontinuity in magnetohydrodynamics," Zh. Eksp. Teor. Fiz., 38, No. 1 (1960).
4. O. I. Dementii and S. V. Dementii, "Structure of fast MHD shock waves," Magnitn. Gidrodinam., No. 3 (1968).
5. O. I. Dementii and S. V. Dementii, "Existence of discontinuity in the profile of a slow MHD shock wave," Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1971).
6. G. S. Golitsyn and K. P. Stanyukovich, "Some magnetogasdynamic problems taking account of finite conductivity," Zh. Eksp. Teor. Fiz., 33, No. 6 (1957).
7. P. L. Gusika and G. S. Sukhov, "Magnetogasdynamic shock wave with conductivity jump," Magnitn. Gidrodinam., No. 2 (1967).
8. G. B. Whitham, "Some comments on wave propagation and shock wave structure with application to magnetohydrodynamics," Commun. Pure Appl. Math., 12, No. 1 (1959).
9. A. G. Kulikovskii and G. A. Lyubimov, "Structure of oblique magnetohydrodynamic shock waves," Prikl. Mat. Mekh., 25, No. 1 (1961).
10. G. Ya. Lyubarskii, "Structure of shock waves," Prik1. Mat. Mekh., 2, No. 6 (1961).
11. O. I. Dementii and G. Ya. Lyubarskii, "Theory of shock waves of small intensity," Magnitn. Gidrodinam., No. 3 (1967).
12. G. Ya. Lyubarskii, "Existence of shock waves of small intensity," Prikl. Mat. Mekh., 26, No. 3 (1962).
13. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vols. 1 and 2, Academic Press (1968).
14. A. G. Kulikovskii and G. A. Lyubimov, Magnetohydrodynamics [in Russian], GIFML, Moscow (1962).
15. R. V. Polovin, "Nonlinear magnetohydrodynamic waves," Diff. Uravn., 1, No. 4 (1965).
16. E. P. Sirotina and S. I. Syrovatskii, "Structure of shock waves of small intensity in magnetohydrodynamics," Zh. Eksp. Teor. Fiz., 39, No. 3 (1960).

RADIATION ORIGINATING BY THE IMPACT OF A GAS LAYER AGAINST AN
OBSTACLE AT VERY HIGH VELOCITIES
V. I. Berge1'son and I. V. Nemchinov

UDC 533.6.011

For some time now, various devices that allow gases to be accelerated to very high velocities have been constructed. As an example, we point out the erosion-type magnetoplasma compressors [1-5], in which maximum velocities ($70-90 \mathrm{~km} / \mathrm{sec}$) with a quite high density of the gas jet are being successfully achieved. Deceleration occurs when this jet impacts against an obstacle and the kinetic energy of the gas is converted into internal energy. As the temperature of the heated gas becomes high, the emission of the plasma can be considerable. This effect has already been used in experiments [4, 5] in order to increase the energy conversion factor of an electric battery, feeding a plasmodynamic discharge, into radiation energy. It will be of theoretical interest to estimate the principle characteristics of the heated gas and the resulting radiation pulse for different jet parameters (velocity, density, and length) which could then be used to find their optimum values.

The pattern of the motion and transfer of radiation in the case of an arbitrarily shaped obstacle and with an arbitrary distribution of the parameters in the jet can be extremely complex, and for its description the time-consuming solution of the two-dimensional nonsteady radiation-gasdynamic problem is necessary. However, in certain cases, this phenomenon can proceed under conditions which are quite close to one-dimensional plane geometry (for example, if the jet impacts on the plane base of an evacuated cylindrical "bucket," as if "cutting out" of it a uniform central part, which occurred in [4], and the times being considered are such that the resulting shock wave traverses a distance which is less than the diameter of the bucket).

We shall carry out some estimates of the parameters of a plasma heated up by the impact against an obstacle. Suppose that the average velocity of the jet is $\sim 50 \mathrm{~km} / \mathrm{sec}$ and the

[^0]

Fig. 1
kinetic energy of unit mass of the gas is, correspondingly, $\sim 10^{3} \mathrm{~kJ} / \mathrm{g}$. In the shock wave, this kinetic energy will be converted into thermal energy. For definiteness, we shall assume that the material of the jet is aluminum. The thermodynamic properties of aluminum vapor, in the graphical form given in [6], can be approximated by the expression

$$
e=5.4 T^{1.90}\left(\rho / \rho_{\mathcal{L}}\right)^{-0.154} ;
$$

where e is the specific internal energy, $\mathrm{kJ} / \mathrm{g} ; \mathrm{T}$ is the temperature, eV ; $\mathrm{\rho}$ is the density, $\mathrm{g} /$ cm^{3}; and $\rho_{\mathrm{L}}=1.20 \cdot 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$. With a density of the gas advancing on the obstacle of ρ_{s} ~ $10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$ or a density behind the shock wave of $\rho_{\mathrm{s}} \sim 10^{-4} \mathrm{~g} / \mathrm{cm}^{3}$, we obtain that the temperature reached is $\mathrm{T}_{\mathrm{s}} \sim 10 \mathrm{eV}$. The density of the gasdynamic flow of energy of the advancing jet $\mathrm{q}_{\mathrm{h}}=(1 / 2) \mathrm{pu}^{3}$ in this case amounts to $\sim 10^{2} \mathrm{MW} / \mathrm{cm}^{2}$, whereas the radiation flux density of a black body is $\mathrm{q}_{\mathrm{b}}=\sigma \mathrm{T}_{\mathrm{S}}^{4} \sim 10^{-3} \mathrm{MW} / \mathrm{cm}^{2}$ (σ is the Stefan-Boltzman constant). Therefore, the ratio $\mathrm{q}_{\mathrm{b}} / \mathrm{q}_{\mathrm{h}}$ ~ 10 . It defines the role of the radiation only for the case when the shockcompressed layer has an optical thickness of τ >> 1. Thus, the shock wave for these values of the velocity and density of the advancing jet with a quite large optical thickness of the gas behind the front is not only intensely radiating, but is also "supercritical" in the terminology of [7]. However, with a not too large thickness of the shock-compressed layer and gas density in it, the condition $\tau \gg 1$ is not satisfied.

Suppose that the characteristic length of the jet is $\sim 10 \mathrm{~cm}$ and its mass (per unit area) is $\sim 10^{-4} \mathrm{~g} / \mathrm{cm}^{2}$, i.e., the kinetic energy per unit area is $\sim 10^{2} \mathrm{~J} / \mathrm{cm}^{2}$. These parameters are characteristic for experiments [4, 5]. With the temperatures and densities of the gas behind the shock front stated above, the shock-compressed layer with a thickness of $\sim 1 \mathrm{~cm}$ is optically transparent. This follows from Fig. 1, where the dependences of the degree of blackness η of a uniformly heated layer with thickness $x=1 \mathrm{~cm}$ on the temperature T are shown. The values of the logarithms of the relative densities $\log \left(\rho / \rho_{L}\right)$ are shown on the corresponding curves. The solid curves give the values of η obtained by taking into account only continuous absorption, while the dashed curves give the values obtained by taking account of the lines. It can be seen that in the range of variation of the parameters of the problem being considered, the blackness coefficient $\eta \sim 0.03$. Thus, the radiation flux density $q_{r}=\eta \sigma T^{4} \sim 30$ $\mathrm{MW} / \mathrm{cm}^{2}$, i.e., $\mathrm{q}_{\mathrm{r}} / \mathrm{q}_{\mathrm{h}} \sim 0.3$, and the role of radiation, as before, is large. With a reduction of the initial density ρ of the jet by an order of magnitude, η decreases to approximately 10^{-3} and, despite the ratio of q_{b} / q_{h} increasing to 10^{2}, the ratio q_{r} / q_{h} decreases to 0.1 . With increase of the density by an order of magnitude (up to 10^{-4} ahead of the front and up to $10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$ behind it), the degree of blackness increases up to values which are close to unity. At the same time, the ratio q_{b} / q_{h} falls to 1 . Consequently, we have $q_{r} / q_{h} \sim 1$.

With further increase of density, the relative role of radiation should decrease because of the decrease of q_{b} / q_{h}. Moreover, the effect of screening of the radiation emerging from the shock front must appear.

A significant part of the radiation emitted by the front belongs to the ultraviolet range and can be absorbed by a relatively cold impinging gas. Therefore, ahead of the shock front a so-called heated layer is formed [7]. With $\mathrm{q}_{\mathrm{r}} / \mathrm{q}_{\mathrm{h}} \sim 1$, the temperature ahead of the front should be on the order of the temperature behind it. However, in the case of a relatively small gas density ρ or a small jet length L, when the mass m of the layer is small, the effect of screening may be small. In fact, when $\rho \sim 10^{-4} \mathrm{~g} / \mathrm{cm}^{3}$ and the temperature in the

heated layer $T \sim 4-5 \mathrm{eV}$, the mass absorption coefficient α of radiation with quantum energies of $\varepsilon \approx 25-70 \mathrm{eV}$ amounts on the average to $10^{3} \mathrm{~cm}^{2} / \mathrm{g}$. With a temperature of $7-10 \mathrm{eV}$, it is reduced to approximately $10^{2} \mathrm{~cm}^{2} / \mathrm{g}$. Therefore, even with a comparatively small heating up of the gas ahead of the front of mass of the order of $10^{-3} \mathrm{~g} / \mathrm{cm}^{2}$, it is found to be transparent for the emitted radiation. With a density of $10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$, when the impinging layer of gas has a mass of order $10^{-4} \mathrm{~g} / \mathrm{cm}^{2}$, it is found to be almost transparent for these quanta, even in the cold state. Consequently, the overwhelming part of the emitted radiation can go out "to infinity." The weakness of the screening effect and the possible transparency of the gas behind the front with limited mass of the impinging gas distinguishes, in principle, this problem from the problem (considered in detail in [7]) concerning the motion of an intensely radiating shock wave through a boundless medium when the gas behind the front is nontransparent but the screening effect is large.

Thus, the estimates show that with gas densities on the order of 10^{-4} to $10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$ and with a thickness of the layer of advancing gas of order 10 cm , the radiation energy emitted in vacuo may be of the same order of magnitude as the kinetic energy of the jet. With reduction of density or with its increase by comparison with the values given, the relative fraction of radiation can be reduced. In the latter case, emission will occur mainly only during exit of the shock wave at the boundary of the advancing layer with the vacuum and at the stage of subsequent dispersion. In the greater part of the period of propagation of the shock wave through the gas, it will be screened.

It follows from what has been said that by changing the density of the impinging gas, the coefficient of transformation of the kinetic energy of the jet E_{k} into thermal radiation E_{r} can be changed. Naturally, the position of the maximum of the coefficient of transformation E_{r} / E_{k} with respect to the density varies with the velocity of the jet and its length. With increase of the length of the jet (with constant density), the opacity and, consequently, also the maximum of E_{r} / E_{k} with respect to density are established for low gas densities. With increase of velocity, the temperature of the gas behind the shock front and the transparency of the shock-compressed layer are increased, and therefore the maximum of E_{r} / E_{k} with respect to density should be observed at high gas densities or (and) at large jet lengths. In order to verify the validity of the pattern of the radiation-gasdynamic processes described above and the estimates made of the principal parameters, we shall consider some results of the numerical calculations of the problem concerning the impact against a plane obstacle of a plane layer of aluminum vapor, moving with a high velocity.

Owing to the action of the resulting radiation on the obstacle, it will be vaporized. It has been assumed, for simplicity, that the material of the obstacle is also aluminum. In the calculations, the initial values of the velocity of motion, the gas density, the mass of the layer, and its length were varied. The initial velocity distribution was assumed to be a linear function of the distance, which is characteristic for the inertial stage of motion of the gas jet in vacuo, when its thermal energy is significantly less than its kinetic energy. The maximum temperature of the gas in the jet before impact was 1 to 2 eV, which occurs, for example, under the conditions of certain of the experiments [4, 5]. The initial. gas density distribution along the length of the jet corresponded approximately to these same experiments and was a symmetrical function (close to sinusoidal) relative to the middle of the layer. Figure 2 shows the initial velocity and density distributions with respect to the dimensionless mass of the layer m / m_{0} (m_{0} is the total mass) in one of the versions of the calculation, which we shall arbitrarily call the primary version. Similar distributions for

other versions are obtained by means of a similar extension of compression along both axes. In the given case, the maximum velocity amounted to $49 \mathrm{~km} / \mathrm{sec}$, the total kinetic energy $\mathrm{E}_{\mathrm{k}}=$ $212 \mathrm{~J} / \mathrm{cm}^{2}$, the internal energy $\mathrm{E}_{\mathrm{T}}=38 \mathrm{~J} / \mathrm{cm}^{2}$, the total mass $\mathrm{m}_{0}=4.5 \cdot 10^{-4} \mathrm{~g} / \mathrm{cm}^{2}$, the maximum density $1.9 \cdot 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$, and the average density $1.15 \cdot 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$. The density decreases in proportion to the motion of the "free" jet, due to its stretching. In the "control" Euler section, where the head of the jet was located at the initial instant (and where the obstacle subsequently was placed), with free motion of the jet in vacuo at the time 4.5 usec the density should reach a maximum value of $1.2 \cdot 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$, and the velocity should amount to 34 $\mathrm{km} / \mathrm{sec}$. The calculation of the vaporization of the obstacle was carried out by using the vaporization wave representation [8, 9]. The heat transfer in the depths of the condensed substance was taken into consideration by means of the normal thermal conductivity. The gasdynamic part of the program was close to that used in [8, 9] during the investigation of the action on an obstacle of monochromatic radiation or in [10] for the analysis of the action of the emission of a continuous spectrum. When calculating the radiation transfer, averaging was carried out with respect to frequencies within the limits of eight groups, the boundaries of which were as follows: 0...2, 0...6, 0...12...18...25...39...68...153 eV. It follows from Fig. 1 that with densities, temperatures, and dimensions of the layer which are typical for the given problem, the role of the lines in radiation transfer is small. Therefore, for simplicity, the lines will not be taken into consideration.

Figure 3 shows the time variation of the quantities $\mathrm{E}_{\mathrm{k}}, \mathrm{E}_{\mathrm{T}}, \mathrm{E}_{\mathrm{r}}$, and also E_{C} - the thermal energy in the condensed phase. The instant $t=0$ corresponds to the start of collision of the jet with the obstacle. The solid line shows the relationship in a calculation in which radiation is taken into account, while the dashed line is for the same calculation without taking radiation into account. It can be seen that the kinetic energy varies in an almost identical manner; however, when radiative transfer is taken into consideration, a considerable part of it converts to radiation energy. Thus, at $15 \mu \mathrm{sec}$, when the shock wave withdraws from the obstacle by 6 cm , the losses to radiation into the vacuum amounts to $\approx 50 \%$ of the initial kinetic energy of the jet.

Figure 4 shows the temperature distributions T with respect to the bulk Lagrangian coordinate m. The times t are shown on the corresponding curves. Figure $4 a$ refers to the primary version described above, and Fig. $4 b$ refers to the version with the initial density (and mass) of the jet increased by a factor of 10 (with constant values of the other parameters). The dashed lines mark the boundary between the vapor of the jet and the obstacle. At the boundary with the vacuum, $m=0$.

The temperature distribution in Fig. 4 a corresponds to the case of strong luminescence bearing a spatial nature. Behind the shock front, the temperature decreases rapidly because of radiation both to the vacuum and to the obstacle. We note that in the same calculation, but without taking account of radiation, the temperature distribution over the mass of the shock-compressed layer was quite uniform.

Near the obstacle, adense and relatively cold layer of erosion vapor is formed, the total mass of which may reach $50-70 \%$ of the mass of the impinging jet. The heated layer ahead of the shock front is weakly expressed. The nature of the temperature distribution in Fig. 4b, however, is close to the typical distribution in a wave with supercritical amplitude [7]. At the instant $8 \mu s e c$, the edge of the heated layer reaches the boundaries with the vacuum and the maximum radiation yield is observed.

Thus, when radiation effects are taken into account, greater energy losses by radiation are observed, the mass of vapor is increased significantly, and the nature of the distribution of the parameters changes; i.e., radiant transfer is the defining physical factor in the problem being considered.
a

Fig. 5
Screening of the radiation emitted to the side of the vacuum is weak for the primary version, but for the second version (with 10 -fold density) the shock front, in practice, is screened for a long time. This can be seen from Fig. 5, where the distributions of the radiation flux density q_{r} with respect to the mass m are given at the same instant as in Fig. 4. In the primary version, the maximum radiation flux density going out into the vacuum reaches $12 \mathrm{MW} / \mathrm{cm}^{2}$ at $7 \mu \mathrm{sec}$ and is significantly lower than the radiation flux density of an absolutely black body, with maximum temperatures behind the shock front at these instants. The corresponding effective temperature amounts to only 3.3 eV and is far less than the true temperatures in the plasma. It is of the same order as the values of the brightness temperatures in the experiments of [4, 5]. With an increase of the initial density by a factor of 10 , the maximum radiation flux density into the vacuum increases to $200 \mathrm{MW} / \mathrm{cm}^{2}$ and the effective temperature is $\approx 6.7 \mathrm{eV}$ (close to the true temperature). Thus, an increase of density of the jet gases contributes to a significant increase of the brightness temperature.

The spectra of $\dot{\varphi}_{\varepsilon}^{0}$ of the outgoing radiation into the vacuum at the initial instant $t=7$ $\mu \mathrm{sec}$ are represented in Fig. 6. Curve 1 corresponds to the primary version and curve 2 corresponds to the version with a 10-fold initial density. In the first case, the spectrum is quite remote from a Planck spectrum, but in the second case it is close to it and harder.

Despite the strong change of density of the jet over the range of its values considered, the ratio of the energy E_{r} radiated into the vacuum to the initial kinetic energy of the jet $\mathrm{E}_{\mathrm{k}}^{\circ}$ varies with time, starting from $7-8 \mu \mathrm{sec}$, in an almost identical way. This is because the process of deexcitation takes place so rapidly that the intensity of the radiation (in the absence of screening) is limited, in essence, only by the stopping process of the jet and the speed of "response" of the kinetic energy. Therefore, the magnitude of the radiation pulse is almost proportional to the kinetic energy, and the maximum radiation flux density is proportional to the hydrodynamic flux density. When the density is reduced by a factor of 10 in comparison with the primary version, the relative fluorescence at 15 usec is decreased from 50 to 30%. The dependence of the quantity E_{r} / E_{k}^{0} on t / t_{*} varies relatively weakly and with a change of the maximum velocity of the jet within the limits $30-70 \mathrm{~km} / \mathrm{sec}$ for an initial density of the first version ($E_{r} / E_{k}^{\circ} \approx 50-60 \%$ with $t / t_{*} \approx 3$ to 4 ; t_{*} is the characteristic time of impract, inversely proportional to the velocity of the jet). Figure 7 shows the variation of $\mathrm{E}_{\mathrm{r}} / \mathrm{E}_{\mathrm{k}}^{0}$ with t for a version having the density and mass of the primary version (curve 1), but with a velocity of $65 \mathrm{~km} / \mathrm{sec}$, and also for versions having the density (and mass) increased by a factor of 3 to 10 (curves 2 and 3, respectively). It can be seen that in this case the magnitude of the fluorescence is found to be stable for change of density, and the greatest fluorescence is observed for an intermediate value of the maximum initial density $-6 \cdot 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}$, which was also predicted by the estimates given above.

Thus, the estimates and the calculation show that, based on the impact of the gas jet against the obstacle, extremely intense radiation sources in the visible and ultraviolet regions, in the region of the far vacuum ultraviolet and, in the long term (with increase of the jet velocity), also in the ultrasoft x-ray region, canbe created; and the radiation energy can be on the order of the kinetic energy of the jet, while the pulse duration is of the order of the duration of the impact.

The authors thank Yu. S. Protasov and A. S. Kamrukov for valuable discussions during the formulation and carrying out of this work, and V. P. Buzdin and I. B. Kosarev for providing the tables of spectral absorption coefficients of aluminum, taking account of line absorption.

LITERATURE CITED

1. N. P. Kozlov, L. V. Leskov, Yu. S. Protasov, and V. I. Khvesyuk, "Experimental investigation of the plasma focus in erosion plasma accelerators. I, II," Zh. Tekh. Fiz., 43, No. 4, 740-748 (1973); 44, No. 12, 2519-2521 (1974).
2. Plasma Accelerators [in Russian], Mashinostroenie, Moscow (1973).
3. V. D. Zvorykin, G. N. Kashnikov, A. D. Klementov, N. P. Kozlov, V. A. Malashchenko, Yu. S. Protasov, and V. B. Rozanov, "Radiation of the plasma focus of a magnetoplasma compressor in the visible and ultraviolet regions of the spectrum," Kvant. Elektron., 2, No. 11, 2416-2421 (1975).
4. A. S. Kamrukov, G. N. Kashnikov, N. P. Kozlov, V. A. Malashchenko, V. K. Orlov, and Yu. S. Protasov, "Possiblities of increasing the spectral efficiency of plasmodynamic discharges in the visible and UV spectral regions," Pis'ma Zh. Tekh. Fiz., 2, No. 4, 176180 (1976).
5. N. P. Kozlov, V. A. Malashchenko, and Yu. S. Protasov, "Radiation characteristics of the zone of interaction between hypersonic plasma streams and obstacles in the vacuum ultraviolet region," Zh. Prikl. Spektrosk., 27, No. 1, 28-31 (1977).
6. T. B. Malyavina and I. V. Nemchinov, "Parameters of steady radially symmetrical vapor jets heated by radiation," Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 58-75 (1972).
7. Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vols. 1 and 2, Academic Press (1968).
8. G. G. Vilenskaya and I. V. Nemchinov, "Numerical calculation of the motion and heating up by laser radiation of a plasma formed during a burst of absorption in the vapor of a solid," Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 3-19 (1969).
9. V. I. Bergel'son, A. P. Golub', I. V. Nemchinov, and S. P. Popov, "Formation of a plasma in a layer of vapor by the action of laser radiation on a solid," in: Quantum Electronics [in Russian], No. 4(16), Sov. Radio, Moscow (1973).
10. V. I. Bergel'son, I. V. Nemchinov, and V. V. Novikova, "Combustion of a condensed substance by the action of radiation of a continuous spectrum," Fiz. Goreniya Vzryva, 11, No. 5, 730-733 (1975).

[^0]: Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 32-39, November-December, 1978. Original article submitted October 3, 1977.

